
Finite size analysis of eigenvalue spectrum for random walks on a critical percolation cluster

in four dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 2943

(http://iopscience.iop.org/0305-4470/33/15/303)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 2943–2950. Printed in the UK PII: S0305-4470(00)08320-7

Finite size analysis of eigenvalue spectrum for random walks
on a critical percolation cluster in four dimensions

Sang Bub Lee† and Hisao Nakanishi‡
† Department of Physics, Kyungpook National University, Taegu, 702-701, Korea
‡ Department of Physics, Purdue University, W Lafayette, IN 47906, USA

Received 25 September 1999

Abstract. We study by Markov chain analysis the random walks on a critical percolation
cluster embedded in a four-dimensional hypercubic lattice. We calculate the number of dominant
eigenvalues of the transition probability matrix and estimate the spectral and fractal dimensions ds
and dw of random walks from the eigenvalues and their distribution. The estimates of ds and dw
obtained from the data for a given size S of the percolation cluster exhibit some S dependence.
Extrapolating the results to S → ∞ limit, we obtain ds = 1.330 ± 0.010 close to the previous
result by other methods and a new result dw = 4.50 ± 0.15. These values are also confirmed by
direct Monte Carlo simulations of random walks on a percolation cluster.

The random walk (RW) has served well as a model for the Brownian motion of particles, such as
electrons in metal and colloidal particles in solution [1,2]. As the number of steps t gets larger,
the rms displacement Rt normally increases as Rt ∝ t1/2, where the proportionality constant
is related to the diffusion coefficient. On the other hand, percolation models, both lattice and
continuum, play an important role in describing real materials, including the polyfunctional
condensation of monomers, the hydrogen bond network in liquid water, the crosslinking of
polymers, and the two-component disordered media [3–5].

The RW on a critical percolation network is naturally used to describe the elastic and
transport properties in self-similar porous media [1,2,6]. The rms displacement of such RWs
at t timesteps is known to exhibit an anomalous behaviour, given asRt ∼ t1/dw , with the fractal
dimension of RWs dw greater than 2.

Recently, the critical behaviour of such RWs was studied by a technique called Markov
chain analysis, in which the probability P(t) that a walker returns to the starting point and the
velocity autocorrelation function 〈v(t) · v(0)〉 after t timesteps are related to the eigenvalue
spectrum of the transition probability matrix W of RW [7, 8]. The matrix W is defined with
its ij th element equal to the probability that a particle at a site j hops to a site i in the next
timestep. The matrix elementWij depends on the type of RW model, such as the blind ant or
the myopic ant model [9]. The blind ant moves to one of the occupied nearest neighbour sites
in one timestep with equal probability of 1

z
(z being the coordination number of the underlying

lattice) and it remains at the same site with the probability equal to (z − zi)/z (zi being the
number of occupied nearest neighbour sites of the site i). On the other hand, the myopic ant
never stays at the same site but always moves to one of the nearest neighbour occupied sites
with equal probability 1

zi
at each timestep. In both cases, each element of the matrix W is

equal to or greater than zero and the sum of all elements in each column is equal to 1, i.e. W

is a Markov matrix.
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In the long-time limit, P(t) and 〈v(t) · v(0)〉 are expected to obey the following power
laws:

P(t) ∼ t−ds/2 (1)

〈v(t) · v(0)〉 ∼ t2/dw−2 (2)

ds being the spectral dimension of the underlying fractal substrate. For a standard diffusive
behaviour on a regular lattice, ds is equal to the spatial dimensionality d, while on a fractal it
is generally different from d .

It is known [7,8] thatP(t) and 〈v(t)·v(0)〉 in the long-time limit are the Laplace transforms
of the density of the eigenvalues n(λ) and the quantity π(λ) = n(λ)aλS(λ− 1)2 which scale,
respectively, as

n(λ) ∼ | ln λ|ds/2−1 (3)

and

π(λ) ∼ | ln λ|1−2/dw (4)

S and aλ being, respectively, the size of the underlying cluster and the expansion coefficient
of the position autocorrelation function to a power series of λ. Thus, equations (3) and (4)
can be used to determine ds and dw from the eigenvalues and eigenvectors of the transition
probability matrix in the region of the spectrum near λ = 1.

Based on this idea, researchers in [8,10–12] have studied the static and dynamic properties
of various fractal substrates. They obtained on critical percolation clusters ds/2 − 1 =
−0.35 ± 0.01 in both two (2D) and three dimensions (3D), 1 − 2/dw = 0.30 ± 0.01 in 2D,
and 0.46 ± 0.03 in 3D, for the range of the system sizes they used. These values correspond
to, respectively, ds = 1.30 ± 0.02, dw = 2.86 ± 0.04, and dw = 3.70 ± 0.07. When compared
with earlier estimates using other methods [9, 13], these Markov chain estimates were very
close to the earlier ones in 2D, while in 3D the estimate of ds was somewhat smaller, though
that of dw was close.

In this paper, we explicitly show by basically the same work in 4D that the estimates of
ds and dw for a finite system depend on the size of the underlying clusters, and that careful
finite size analysis should be undertaken to extract the correct values. Since the finite size
effect alters the matrix elements Wij near the edges, some eigenvalues will also be altered
accordingly. Although the previous results in 2D and 3D reported negligible finite size effects
(except when finite size scaling analyses of the very edge of the spectrum were performed),
it is unclear whether or not the finite size effects in this method are generally small even for
higher dimensions. We will see later that our data indeed indicate that the estimates of the
powers in equations (3) and (4) depend substantially upon the size of the underlying clusters.
We calculate both ds and dw, for the sake of cross-checking, by an alternative method of
Monte Carlo simulation for RWs on a hypercubic lattice of 504 sites and find that results are
in excellent agreement with those of the Markov chain analysis. It should be emphasized that,
to the best of our knowledge, our estimate of dw is new and no comparable estimate has been
reported before now, although the upper and lower bounds were given in the review [2]. The
spectral dimension ds is also confirmed by an estimate using the subdominant eigenvalues.

The infinite percolation cluster at percolation threshold is generated using the breadth-first
search algorithm. The known value of the percolation thresholdpc = 0.197 [3,14] was used for
this purpose. (We also confirmed this value by Monte Carlo renormalization calculations [15]
coupled with the finite size scaling analysis.) Once the desired cluster is obtained, we construct
the matrix W from the number of occupied neighbouring sites, using the blind ant rule. We
then calculate number of dominant eigenvalues using the Arnoldi–Saad algorithm [16], the
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Figure 1. Plot of 10αn(λ) against the | ln λ| on a double common logarithmic scale for various
sizes of cluster: from below, S = 15 000 (α = 0), S = 8000 (α = 0.2), S = 3000 (α = 0.4), and
S = 1000 (α = 0.6).

details of which were described in [8]. Since in this paper we are interested in the extent to
which the estimates of ds and dw are dependent on the size of cluster S, we analyse our data
for various values of S, ranging from S = 500 to S = 15 000.

Shown in figure 1 is n(λ) versus | ln λ|, plotted on a double common logarithmic scale,
for selected values of S. Data from below are for S = 15 000, 8000, 3000, and 1000, shifted
vertically by amounts of, respectively, 0, 0.2, 0.4, and 0.6, to avoid overcrowding of the data
points. The solid line on each set of data is the regression fit obtained from at least two decades
of | ln λ| in the large eigenvalue region near λ = 1, which corresponds to the asymptotic limit
of t � 1 for RWs. However, the choice of the fitting region for the power-law behaviour is
more or less subjective, implying that slightly different regions yield different powers. The
fitting region was, thus, selected as an interval for which the linear regression coefficient is
optimal (closest to 1), and the variation of the slopes was included in the error. As the size of
cluster increases, the absolute slope of the regression fit gradually decreases, indicating that the
finite size affects the distribution of the eigenvalues. The estimated slopes vary from −0.355
(for S = 1000) to as large as −0.338 (for S = 15 000). This implies that a naive estimate of
ds from the data for any given size system gives the wrong result, and that the correct value
should be obtained in the S → ∞ limit.

In order to visualize how the estimates of the slope vary as S increases, we plot in figure 2
the slope against S−1. If one estimates ds with the data for S = 15 000, it would be about
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Figure 2. Plot of the slopes obtained from the regression fits of double common logarithmic plots
of n(λ) versus | ln λ| against the inverse of the size of cluster.

1.325, which is already close to the earlier estimate [13]. From the trend, one can expect
that the slope for an infinite cluster would yield a slightly larger value. A simple eyeball
extrapolation fit indicates that the data appear to converge to a value of −0.335 ± 0.010. The
corresponding value of ds would be ds = 1.330 ± 0.010, which is consistent with the earlier
estimate ds = 1.328 ± 0.006 [2, 13].

Our observation that the Markov chain estimates of ds and dw show non-negligible finite
size effects in 4D percolation is in contrast to the results of the previous works for 2D and 3D
percolation. Whether a more careful analysis of size dependence would expose similar finite
size effects (and allow for better exponent estimates) even in 2D and 3D remains to be seen.

The plot of π(λ) is qualitatively similar to those of the earlier works in low dimensions.
The slope estimated from the plot ofπ(λ) against ln λ on a double logarithmic scale is presented
in figure 3. Apparently, the slope increases as the size of cluster increases, again indicating
that the estimate of dw for a finite size system gives the wrong result. If one estimates the
exponent dw from the slope for a given size system, one would get dw � 3.99 for S = 1000
and dw � 4.40 for S = 15 000. However, from the figure, it is clear that the correct value of dw
would be even larger than the latter. The intercept on the ordinate, i.e. the slope in the infinite
system limit, is obtained by a simple eyeball fit as 0.55 ± 0.01, yielding dw = 4.50 ± 0.15.

The subdominant eigenvalue λ2 is known to be related to the cluster size S as [8]

| ln λ2| ∼ S−2/ds ∼ S−dw/df (5)

from which one can also estimate ds . Figure 4 is the plot of | ln λ2| against S; the symbols are
the logarithmic average of the eigenvalues and the solid line is the regression fit. The slope of
the fit is 1.5071 ± 0.0037, which yields ds = 1.327 ± 0.004. This value is very close to our
earlier estimate. Since this analysis is based on finite size scaling, it is clear that the spectrum
edge shows finite size effect.

The spectral and fractal dimensions of RWs can also be obtained alternatively by direct
measurement of P(t) and Rt . For the consistency check, we generated RWs on an ‘incipient’
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Figure 3. Plot of the slopes obtained from the regression fits of double common logarithmic plots
of π(λ) versus | ln λ| against the inverse of the size of cluster.
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Figure 4. The subdominant eigenvalues plotted against the size S on a double common logarithmic
scale. The size of error bar on each data is smaller than the size of symbol and the solid curve is
the regression fit.

infinite network on a 504 hypercubic lattice using the blind ant rule. An infinite network in
a given cell of side L is defined in two ways: (i) clusters which span along all coordinate
directions and (ii) clusters which span along any (one or more) of the coordinate directions. In
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both rules, the cluster must wrap the cell along the spanned coordinate direction(s) by periodic
boundary conditions, so that RWs may extend further to the periodic images of the system
without termination at the cell edges. We use pc = 0.1988 in rule (i) and pc = 0.197 in rule
(ii). The slightly larger value is chosen in rule (i) to save computing time because there are
fewer chances of sampling desired clusters in rule (i). A predetermined number of RWs are
sampled, each from the randomly selected points, and the probabilityP(t) and the mean square
displacement are averaged over 2.5 × 104 walks on each realization and over 60 realizations.

The raw Monte Carlo data of P(t) exhibited strong even–odd oscillations due to the
characteristic of the underlying lattice structure. We averaged the data within every interval of
�(ln t) = 0.05 to get rid of such oscillations and plotted the result on the average position in
each interval. The linear regression fit for 100 � t � 50 000 yielded a good linear behaviour
(not shown) with the slope −0.6647±0.0009 which, accordingly, yielded ds = 1.329±0.002.
This value is in excellent agreement with our earlier estimate by eigenvalue spectrum and also
with the estimate from the subdominant eigenvalues.

In order to estimate dw from the data for rms displacement, one should plot, as for P(t),
Rt against t on a double logarithmic scale and estimate the asymptotic slope in the t → ∞
limit. However, if the rms displacement exhibits nontrivial correction terms, as it turns out,
estimation of dw will not be as simple as for P(t). Assuming nonanalytic correction terms in
Rt , one can write

Rt = At1/dw (1 + Bt−s + Ct−1 + · · ·). (6)

In order to estimate the value of 1/dw, we define the effective value d−1
w,eff(t), similar to νeff(t)

in [17], which results in, using equation (6),

d−1
w,eff(t) = 1/dw + at−s + bt−1 + · · · . (7)

Shown in figure 5 is the d−1
w,eff(t) plotted against t−1; the circles are those obtained by rule

(i) and the crosses by rule (ii). From the figure, it appears that there exists a strong nonanalytic
correction term with s < 1. If this is indeed the case, then the plot of d−1

w,eff(t) against t−s is
expected to exhibit linear behaviour in the t � 1 region. On this basis, we have chosen s as a
parameter and plotted d−1

w,eff(t) against t−s . The best linear fits were obtained for s = 0.27 for
the data from rule (i) and s = 0.25 for those from rule (ii), as shown in the inset of figure 5,
and, from these, the value of 1/dw was estimated to be 0.221 ± 0.001 and 0.213 ± 0.001 for
rule (i) and rule (ii), respectively. Such a strong correction has not been reported before, as far
as we are aware. It should be noted that the result by rule (i) is slightly larger than that by rule
(ii), apparently due to the fact that the underlying clusters in (i) are more compact than those
in (ii). The displacement of RWs on such compact clusters is generally enhanced, yielding a
smaller estimate of dw. We thus expect 1/dw = 0.22 ± 0.01, which is again consistent with
that by Markov chain analysis.

With our estimates of ds = 1.33 ± 0.01 and dw = 4.50 ± 0.15 for RWs, the fractal
dimension of the underlying percolation cluster can be obtained, using the Alexander–Orbach
scaling relation [18], as dF = dsdw/2 = 2.99±0.13, which is consistent, within error bounds,
with the known values [2, 19, 20].

In summary, we have calculated by Markov chain analysis the two exponents ds and dw of
RWs on an infinite network of 4D percolation at the percolation threshold. Our results indicated
that the power-law exponent of the density of eigenvalues for the transition probability matrix
W as a function of | ln λ| decreases as the size of system increases. Extrapolating to an
infinite system limit, it appeared to better agree with the previously available estimates than
that obtained without the extrapolation.

Such a size dependence is caused by the incorrectly determined matrix elements of the
occupied sites near the cluster edges. Since we employed the blind ant model and since the
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Figure 5. The effective exponent d−1
w,eff (t) against t−1 for random walks on an infinite cluster. The

circles are the data by rule (i) and the crosses by rule (ii) described in the text. The inset is the plot
against t−s , with s = 0.27 for circles and s = 0.25 for crosses.

undetermined sites neighbouring to the edge sites were treated as if they were unoccupied,
the matrix elements of those sites would have varied if the clusters were extended beyond the
desired size. The variation of the eigenvalues corresponding to those elements appear to have
yielded the size effect in estimating ds and dw. One possible way to investigate how those
elements affect the estimates of ds and dw would be to compare the results with those of direct
Monte Carlo simulations of RWs on the same finite size clusters.

We have also studied, for corroboration, RWs on sufficiently large spanning clusters by
direct Monte Carlo simulations and found that the spectral and fractal dimensions of the RWs
were consistent with those of the Markov chain analysis. Considering these results, it appears
that the Markov chain analysis is a viable alternative technique for studying RWs on disordered
media as long as the finite size effect is carefully taken into account.
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